The science of Gaia and future challenges

Lund

Aug. 30 - Sept. 1, 2017

Testing the local model of the Milky Way disk with TGAS-RAVE sample

Speaker: Supervisor:

Kseniia Sysoliatina Dr. A.Just

Astronomisches Rechen-Institut, Heidelberg

photo:The Milky Way glimmers over Indonesia. Photograph by Justin Ng, Your Shot.

Galactic disks: inside-out growth?

Radial gradients in chemistry, ages, kinematics

Galactic disks: inside-out growth?

Radial gradients in chemistry, ages, kinematics

Axisymmetric disks	:	equilibrium models
Realistic disks		perturbation theory

Galactic disks: inside-out growth?

Radial gradients in chemistry, ages, kinematics

Axisymmetric disks	:	equilibrium models
Realistic disks	:	perturbation theory

Radial gradients in chemistry, ages, kinematics

Axisymmetric disks	:	equilibrium models
Realistic disks	:	perturbation theory

To probe the vertical structure of the disk for each (R, t) we address the following questions:

- · How much mass is turned to stars?
- What is the mass spectrum of newborn populations?
- What is the metallicity of newly born stars?
- What fraction of stars does still exist?
- What is the dynamical heating?

Radial gradients in chemistry, ages, kinematics

Axisymmetric disks	:	equilibrium models
Realistic disks	:	perturbation theory

To probe the vertical structure of the disk for each (R, t) we address the following questions:

- · How much mass is turned to stars?
- What is the mass spectrum of newborn populations?
- What is the metallicity of newly born stars?
- What fraction of stars does still exist?
- What is the dynamical heating?

Semi-analytic Just&Jahreiß disk model

JJ-model of the solar neighbourhood

- → Hipparcos: 4 plausible models selected (Just&Jahreiß 2010)
- \rightarrow SDSS star counts: SFR constrained (Just&Gao 2011)
- → Hipparcos+CNS: IMF constrained (Rybizki&Just 2015)

Fiducial Model A

JJ-model of the solar neighbourhood

- → Hipparcos: 4 plausible models selected (Just&Jahreiß 2010)
- → SDSS star counts: SFR constrained (Just&Gao 2011)
- → Hipparcos+CNS: IMF constrained (Rybizki&Just 2015)

Fiducial Model A

Does the model need an improvement?

Data characteristics: RAVE

- radial velocites v_r
- photometry Tycho B&V, 2Mass J,H,Ks, etc...
- stellar parameters logT, logg
- abundances Fe,Mg, Al, Ti, Ni, Si

[Wonjo 2016]

Data characteristics: TGAS

TGAS sky coverage:

Catalog includes:

- positions $\alpha,\,\delta$
- proper motions $\mu_{\alpha}\text{,}~\mu_{\delta}$
- parallaxes ພ
- Gaia G-band photometry

[Bovy 2017]

Properties of the selected sample

0.4

0.2

8 -0.2

-0.6

-0.8

-1.0

Parallax cut: $\sigma_{\omega}/\omega < 0.3$ and $\omega > 0$

Abundance cut: [Fe/H]>-0.6 and [Mg/Fe]<0.2 Geometry cut: x**2+y**2 < 300**2 & |b| < 20°

TGASxRAVE: 255 922 stars, selected 20 091

Geometrically inhomogeneous, incomplete sample, probably contaminated by non-thin-disk stars.

Our approach

Our approach

Modelling the thin disk sample

Modelling the thin disk sample

Including the parallax cut

ω

- check if the criteria are fulfilled:

--
$$\sigma_{\omega}/\hat{\omega}_{obs} < 0.3$$

If no – remove the subpopulation from further modelling.

Vertical distribution of stars

1.5

Model A

Lund 01.09.2017

Model A

Model A1a Model A2a Model A2b We can: 1. make gas colder Model A1a: hg = 150 pc \rightarrow 100 pc

2. make stars colder

Model A2a: $\sigma_w(\tau=0 \text{ Gyr}) = 5 \text{ km/s} \rightarrow 3.5 \text{ km/s}$ Model A2b: $\beta = 0.374 \rightarrow \beta = 0.45$

PMA = catalog of Absolute Proper Motions, derived from Gaia DR1 and 2MASS (see poster of V.Akhmetov)

- \rightarrow both datasets are in a good agreement
- \rightarrow some of problematic regions vanish

B-V color distributions

Even with no photometric errors included Model A shows good fit:

Hess diagrams in $(G-K_s, M_g)$

Hess diagrams in $(B-V,M_v)$

Summary

- Overall consistency of Model A with the data in terms of stellar numbers/ kinematics/ Hess diagrams is good.

- Discrepancies in kinematics between model and data are observed, but their significance is questionable.

Model performance can be influenced by:

- selection function
 - reddening map
 - projection bias (close to the plane)
 - isochrones
 - clearness of the thin disk sample...
- → no strong argument for the model recalibration is derived from comparison to TGAS-RAVE.
- Next: look at other R.

photo:The Milky Way glimmers over Indonesia. Photograph by Justin Ng, Your Shot.

Semi-analytic Just&Jahreiß disk model

<u>Assumptions</u>:

- disk is axisymmetric
- disk is in a steady state

Definitions:

SFR	star formation rate
Z	height above the plane
Φ	gravitational potential
ρ	mass density
σ	W-velocity dispersion
h	scale height
g	mass loss function
t,	time-resolution
k	index of subpopulations

Poisson's eq.:

=>

$$z(\Phi) = \int_{0}^{\Phi} d\Phi_{1} [8\pi G \int_{0}^{\Phi_{1}} d\Phi_{2} \rho(\Phi_{2})]^{-1/2}$$

Vertical density profile of a set of isothermal subpopulations:

$$\rho(\Phi) = \sum_{k} \rho_{0,k} \exp\left(-\frac{\Phi}{\sigma_{W,k}^2}\right)$$

with
$$\rho_{0,k} = \frac{SFR_k g_k t_r}{2h_k}$$

Self-consistent pair {Φ(|z|),h_k} - potential and scale heights

Cuts applied to the TGAS-RAVE

$$\sigma(R,\phi,z) = \sigma_0(R,\phi,z) \left(\frac{\tau + \tau_{\min}}{\tau_{\max} + \tau_{\min}}\right)^{\beta_{R,\phi,z}}$$

Reference	Survey	β_R	eta_{ϕ}	β_z
Nordstrom et al. (2004)	GCS	0.31 ± 0.05	0.34 ± 0.05	0.47 ± 0.05
Seabroke & Gilmore (2007)	GCS	-	-	0.48 ± 0.26
Holmberg et al. (2007)	GCS	0.38	0.38	0.54
Holmberg et al. (2009)	Hipparcos, GCS	0.39	0.40	0.53
Aumer & Binney (2009)	Hipparcos, GCS	0.31	0.43	0.45
Just & Jahrei β (2010)	Hipparcos	-	-	0.38
Sharma et al. (2014)	GCS	$0.20{\pm}0.02$	$0.27 {\pm} 0.02$	$0.36{\pm}0.02$
Sharma et al. (2014)	RAVE	$0.19{\pm}0.02$	-	0.3-0.4
Sanders & Binney (2015)	SEGUE	0.33	-	0.4

[Bland-Hawthorn 2016]

Model A: Hess diagrams in $(J-K_s, M_{Ks})$

Distances and velocities of the sample

Calculated quantities (following [Johnson&Soderblom,1986]):

- 3D-velocities in (U,V,W) and (V ϕ ,Vr,Vz)
- d_helio and R

+ their errors (cross-correlations included)

Model to data comparison scheme

V<11 cut

Local CMD (PADOVA isochrones + JJ10)

Radial extension of the model

$$SFR(R) = \langle SFR \rangle \frac{(t+t_0(R))t_r^3}{(t^2+t_1(R)^2)^2}$$

$$t_0(R_{Sun}) = 5.6$$

 $t_1(R_{Sun}) = 8.2$

 $\sigma_e(R_{Sun}) = 25 \, km/s$

Radial extension of the model

