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INTRODUCTION: HEATING HISTORY OF THE GALAXY
• Long been known that older disc populations are dynamically hotter (e.g. 

Roman 1950, Parenago 1950) 
• Non-axisymmetries in the potential scatter stars from circular orbits to 

eccentric (Spitzer & Schwarzschild, 1953). The older stars undergo more 
scattering. 

• Non-axisymmetric features 
1. Spiral arms —> primarily radial scattering/radial heating 
2. Giant Molecular Clouds —> can convert radial to vertical motion 
3. bar (less important at Sun) 
4. satellites/dark-matter sub halos (less important at Sun — maybe 

important in outer disc) 
• Or are older stars born hotter

Roman 1950
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HEATING HISTORY OF THE GALAXY — PRE-GAIA

Spectroscopic 
Geneva-Copenhagen survey 

Casagrande et al. (2011) 
Biased to younger stars 

10,000 stars

In the solar neighbourhood, the 
velocity dispersion is approx. 
power-law with age, σ~𝜏β 
Slope ~gives rate of heating 
although velocity dispersion vs. 
age ≠ heating rate with time 
(Aumer, Binney & Schoenrich 
2016b) 
Confused by age uncertainties — 
non-trivial but typically constant 
relative age error.
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HEATING HISTORY OF THE GALAXY — PRE-GAIA

Astrometric 
Hipparcos + Tycho-2 

Dehnen & Binney (1998) 
Aumer & Binney (2009) 

15,000 stars

Parenago 
discontinuity

Alternative perspective using 
main-sequence stars. 
Redder populations contain older 
stars  
Superposition of different age 
populations beyond turn-off 
colour for oldest populations. 
Parenago discontinuity gives max. 
age. 
Locally, with only proper motions, 
we can reconstruct full 3D 
distribution by using full sampling 
over the sphere. 
Aumer & Binney (2009) find 
βR=0.31, βz=0.45 
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WHAT WILL GAIA SHED LIGHT ON?

How does ‘thick disc’ fit into the picture? 
can σ(𝜏) be explained by continuous thin disc 
heating or is there space for step in σ + age 

errors 

What is the spatial dependence of heating?
can we detect variation in β due to relative 

importance of different heating mechanisms? 



Astrometric 
Gaia DR1: TGAS (Tycho-Gaia 

Astrometric solution) 
APASS photometry 

400,000 stars

Spectroscopic 
RAVE DR5 (-on)+TGAS 

Kunder et al. (2017), Casey et 
al. (2017) 

Ages from isochrones 
80,000 stars
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DETAILS — TGAS MAIN SEQUENCE
Method  

• Cut out main sequence. 
•  Correct for rotation field 

using Oort constants.  
• Average projected proper-

motions over sphere to find 
dispersions [Dehnen & 

Binney 1998] 

Extinction correction  
• Reddening vector in (G-K) 

vs. (J-H) offset from stellar 
locus (also noted by Poggia 

et al. 2017).  

• Extinction estimated from 
this offset folded with a 3d 
extinction prior from Green 

et al. (2015) [where available] 
and an isochrone prior.

G-K

J-H

Reddening

G-K

MG

Extinction  
corrected



RESULTS — TGAS MAIN SEQUENCE

Peculiar solar motion

3D dispersion

Co-variances

Peculiar V
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Method  
• Spectro-photometric 

Bayesian distance 
computation from Burnett & 
Binney (2010) using 
parallaxes from TGAS — age 
is a by-product 

•  Using RAVE-on 
spectroscopic parameters 
from Casey et al. (2017) 
(obtained using Cannon 
approach) 

• using spectroscopic 
parameter correlations — 
important for data-driven 
results as follow training 
dataset 

• c.f. McMillan et al. (2017) for 
similar using RAVE DR5 

DETAILS — TGAS+RAVE AGES
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RESULTS — TGAS+RAVE AGES
Giants

Turn-off



• Full RAVE+TGAS sample ~ match GCS 

• Except have a hotter old component 

• Giants sample show expected trends 

• Turn-off sample shows flattening and rise 
below 2 Gyr —> not trustworthy

Action dispersion →



Split into radial bins 
Difficult to interpret as  

1. Each radial bin has a different selection in vertical height (e.g. we lose 
young cold stars in the innermost bin) 

2. For a fixed age, the sampling in vertical height is non-trivial e.g. 
perhaps more distant stars —> higher vel. dips.
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CHEMO-DYNAMICAL MODEL

Sanders & Binney (2015)

Lines=model 
step=data

Solid=data 
Dashed=model
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CHEMO-DYNAMICAL MODEL

Sanders & Binney (2015)

Actions

Lines=model 
step=data

Solid=data 
Dashed=model
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CHEMO-DYNAMICAL MODEL
Initial Mass Function

Sanders & Binney (2015)

Lines=model 
step=data

Solid=data 
Dashed=model
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CHEMO-DYNAMICAL MODEL
Star formation rate

Sanders & Binney (2015)

Lines=model 
step=data

Solid=data 
Dashed=model
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CHEMO-DYNAMICAL MODEL

Quasi-isothermal
Sanders & Binney (2015)

Lines=model 
step=data

Solid=data 
Dashed=model
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CHEMO-DYNAMICAL MODEL

ISM metallicity
Sanders & Binney (2015)

Lines=model 
step=data

Solid=data 
Dashed=model
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CHEMO-DYNAMICAL MODEL
Radial migration

Sanders & Binney (2015)

Lines=model 
step=data

Solid=data 
Dashed=model
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CHEMO-DYNAMICAL MODEL

Sanders & Binney (2015)

Fitted to local data — Geneva-Copenhagen & Gilmore & Reid density (1989)

Necessary for comparing surveys & incorporating survey 
selection function

Lines=model 
step=data

Solid=data 
Dashed=model
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DETAILS — DATA — TGAS SELECTION FUNCTION
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Comparison to APASS catalogue (filled in with Tycho-2 for V<10). 
c.f. Bovy (2017) — comparison to 2-MASS but similar conclusions
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DETAILS — DATA — RAVE SELECTION FUNCTION
Wojno et al. (2017) — selection in on-sky position and I-band mag
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• Log-Likelihood of TGAS+RAVE data — use [Fe/H], ages, positions, parallaxes, 
proper motions and radial velocities (8 dimensions) 

• Hard bit: Normalize by computing integral of model folded with selection function 
(TGAS x RAVE) over 9D (including mass) — use a fixed set of samples from a 
base model (McMillan & Binney 2013). Uses isochrones and an extinction map. 

• Using Galactic potential from McMillan (2017)

Norm
Ratio of model to  
isochrone prior

Error 
samples

Sum over 
stars

FITTING EDF TO TGAS+RAVE DATA
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FITTING EDF TO TGAS+RAVE DATA — RESULTS

• Rd(thick)=1.9 kpc, Rd(thin)=4 kpc, βR=0.34, βz=0.42 
• σ(𝜏) discontinuous at ~7Gyr, but thick disc needs structure (particularly vertical)

Blue=data, Green=model

Dashed=model  
Solid=data Model 

No errors
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Split into radial bins ↑ Split into age bins ↓

Blue=data, Green=model

Dashed=model  
Solid=data 

FITTING EDF TO TGAS+RAVE DATA — RESULTS
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PREDICTIONS FOR TGAS MAIN SEQUENCE DATASET

Data

Model
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PECULIAR SOLAR MOTION
• Input model solar velocity is Schoenrich et al. (2012) (U,V,W)=(11.1,12.2,7.2) km/s 
• Using Bovy (2017) Oort constants 
• (U,V,W)=(8.5,10,7.0) km/s

Data

Model Model

Data
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CONCLUSIONS
1. Heating with Gaia DR1 

Ages for TGAS+RAVE giants give σ(𝜏) and full TGAS sample gives σ(B-V). 
2. Models of TGAS+RAVE 

Favour broken σ(𝜏), not smooth thin->thick disc transition, short thick disc 
scale 

3. Peculiar solar motion 
U~8.5 km/s V~10 km/s, W=(6.96±0.07) km/s (with Bovy 2017 Oort) 

4. Future 
Ages should be computed for all Gaia DR2 spectroscopic overlaps (then 
using Gaia DR3 spectroscopic parameters). Challenging to understand 

(systematic) errors.


