Finding Galactic-halo substructure in the Gaia data

Amina Helmi

Stellar halo: treasure trove of merger relics

- Cosmological model's characteristic: hierarchical growth: mergers
- Disrupted galaxies/debris naturally in a stellar halo:
\rightarrow merger signatures: Substructures and tidal streams
- Questions:
- Were mergers important for galaxies like MW?
- How often and when did they happen?
- What were the building blocks?
- Stars are "fossils"
- Motions, ages, chemical composition trace origin
- Substructures pinpoint to merger debris
- Probe force field \rightarrow mass (gravity)

snapshots: J. Gardner

Testing the cold dark matter paradigm Is this "picture" correct?

- Are galaxies like the Milky Way and its nearest neighbours embedded in dark matter halos like those predicted by the cosmological model?

Testing the cold dark matter paradigm Is this "picture" correct?

- Are galaxies like the Milky Way and its nearest neighbours embedded in dark matter halos like those predicted by the cosmological model?

Testing the cold dark matter paradigm

 Is this "picture" correct?- Are galaxies like the Milky Way and its nearest neighbours embedded in dark matter halos like those predicted by the cosmological model?
- How much dark matter is there?
- how is it distributed?
- what is the dark matter?

A stream in a dark halo with substructure

Granularity: Hundreds of thousands dark clumps if dark matter particle is cold

The accretion history unveiled so far:

 The Galactic halo from SDSS/PanStarrsOuter halo: $\mathrm{R}>20 \mathrm{kpc}$

- Clear evidence of substructure
-Limited to high-surface brightness features (progenitors/time of events)
-Qualitatively consistent with expectations from ^CDM (Helmi et al. 20II; Deason et al. 2014)

Slater et al. 2014 Galactic Anticentre

PanSTARRS

3π survey

Many narrow streams mapped/discovered.

The relevance of kinematic information

The relevance of kinematic information

Proper motions from Gaia DR2 (April 2018)

$$
\begin{array}{ll}
\mathrm{vt}=200 \mathrm{~km} / \mathrm{s} \rightarrow \mu \sim \mathrm{I}-5 \mathrm{mas} / \mathrm{yr} & (\mathrm{~d} \sim 10-40 \mathrm{kpc}) \\
\text { expected error: } \sigma_{\mu} \sim 0.1 \mathrm{mas} / \mathrm{yr} & (\mathrm{G} \sim \mathrm{I} 7)
\end{array}
$$

\rightarrow Trace substructures, outlier removal, and map MW potential

Not all substructure is accreted - does pinpoint to

WISE+2MASS M giants

interactions and mergers

Gomez et al. $(2016,2017)$

Memory of origin: retained in the motions

- 100s of streams should cross Sun's vicinity
- So far.. not much evidence (small samples)
- How to find more? \rightarrow Clustering in conserved quantities

angular momentum

Construction of a halo sample: TGAS x RAVE

- TGAS dataset is significant improvement, but need full phase-space information \rightarrow cross-match to RAVE survey
- RAVE: spectra for 500 k stars in southern sky: $\mathrm{v}_{\text {los }}$, $\left.\mathrm{M} / \mathrm{H}\right]$, spectrophotometric distance/parallax
(with TGAS priors, McMillan et al. 20I7)

- Metallicity cut $[\mathrm{M} / \mathrm{H}]_{\text {cal }}<-I$ dex to select preferentially halo
-Remove stars with disk-like kinematics
-2-Gaussian decomposition
\rightarrow sample of I307 genuine halo stars

Statistical tests and searches of substructure

Models predict

- several hundred moving groups or streams in Solar Neighbourhood \rightarrow we search for excess clustering in velocity space with a correlation function
- substructure to be more easily apparent in Integrals of Motion space \rightarrow we characterise the distribution, degree of clustering and establish significance

Velocity correlation function

- Very significant excess of pairs in data compared to random/smooth
- for $\Delta<20 \mathrm{~km} / \mathrm{s}, 5.5 \sigma$ (I20 pairs of stars in excess)
- for $20<\Delta<40 \mathrm{~km} / \mathrm{s}: 8.8 \sigma$ (328 pairs in excess)
- Also for very large separations, there is a significant excess

The amount of substructure: comparison to cosmological simulations

- Simulations of halos purely built via accretion show excess on small and large separations of similar amplitude
- some variation from halo to halo
\rightarrow Milky Way halo consistent with being fully built via accretion

Integrals of motion - space

\rightarrow very retrograde motions: 73% of all stars (for E > $-1.3 \times 10^{5} \mathrm{~km}^{2} / \mathrm{s}^{2}$)
In randomised (re-shuffled) smooth distributions the probability of having so many loosely bound counter-rotating stars is $<0.1 \%$

Integrals of motion - space

The retrograde halo in context

- Not common in cosmological simulations
(e.g. Illustris; Vogelsberger et al. 2014)
- Less than I\% of MW-mass galaxies have more than 60% of the less bound stars on retrograde orbits
(here defined as $r>15 \mathrm{kpc}$)

Chemical abundances

- C. Boeche chemical pipeline, not all stars have detailed abundances (SNR > 20, McMillan sample)
- Stars with $\mathrm{Lz}<0$ on average lower metallicity, both $[\mathrm{M} / \mathrm{H}]$ and $[\mathrm{Fe} / \mathrm{H}]$
- May be some clumpiness (?)

Chemical abundances: substructures

Probabilities drawn from overall population can be relatively small

Similar behaviour in e.g. [$\mathrm{Mg} / \mathrm{Fe}$]

Generally limited by number of stars

Galactic Archaeology surveys with

PI - GA surveys: Vanessa Hill

WEAVE-GA surveys at glance

WEAVE - GA ~3-4 million stars to unravel the MW history !

4MOST

de Jong, et al. " 4MOST; the 4-metre Mult-Obiect Spectroscopic Telescope project as preliminary design review" Proc, 5PIE 9908 (2016)

- 2400 fibres (1600 LR \& 800 HR)
- First light 2022

ESO VISTA 4 meter telescope on Paranal

- $5+5$ years
- high-resolution spectra for more than 2 million stars

$\frac{A N O}{A I P}+\infty$

Clustering in integrals of motion (e.g. actions) maximal for right gravitational potential
(DR2)

Summary

- Halo substructure is useful for dynamics (dark matter) and merger history
- Photometric surveys mapped large structures in the outer halo
- TGAS x RAVE: excess of close velocity pairs and loM space rich in substructure
- at level consistent with cosmological simulations of halos purely built via accretion
- Less-bound halo stars predominantly retrograde (significance > 99.9\%)
- Many overdensities for more bound halo
- What's coming:
- DR2 (April 20!8) will be antastic: proper motions and parallaxes for 1 bilion stars!
- 4MOST and WEAVE: spectroscopic follow
- Characterization of the stars in the structures found, eg, chemical abundances, ages
- Numerical simulations for orbits, infall times, link to other structures in the halo
- constraints on characteristic mass and scale of Milky Way

