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snapshots:	J.	Gardner	

Stellar halo: treasure trove of merger relics 

•  Cosmological model’s characteristic: hierarchical 
growth: mergers 

•  Disrupted galaxies/debris naturally in a stellar halo: 
!merger signatures:  Substructures and tidal streams 

•  Questions: 
•  Were mergers important for galaxies like MW?  
•  How often and when did they happen?  
•  What were the building blocks?  

•     Stars are “fossils” 
•     Motions, ages, chemical composition trace origin 
•     Substructures pinpoint to merger debris  
•     Probe force field ! mass (gravity)  



Testing the cold dark matter paradigm 
Is this “picture” correct?  

•  Are galaxies like the Milky Way and its nearest neighbours embedded in dark matter halos like 
those predicted by the cosmological model? 
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Testing the cold dark matter paradigm 
Is this “picture” correct?  

•  Are galaxies like the Milky Way and its nearest neighbours embedded in dark matter halos like 
those predicted by the cosmological model? 

•  How much dark matter is there? 
–  how is it distributed?  
–  what is the dark matter?  

•  Is Gravity correct? 
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A stream in a dark halo with substructure  

Granularity: Hundreds of thousands dark clumps if dark matter particle is cold   

Springel	et	al.	2008	



Belokurov	et	al.	2006	+	

Outer halo: R > 20 kpc 
• Clear evidence of substructure 
• Limited to high-surface brightness features 
(progenitors/time of events) 
• Qualitatively consistent with expectations from 
ΛCDM (Helmi et al. 2011; Deason et al. 2014) 

North	Galac?c	Cap	

Galac?c	An?centre	Slater	et	al.	2014+	

The accretion history unveiled so far:  
The Galactic halo from SDSS/PanStarrs 



PanSTARRS    
3π survey 

Many narrow streams 
mapped/discovered. 

Bernard	et	al.	(2016)	



The	relevance	of	kinema?c	informa?on	



The	relevance	of	kinema?c	informa?on	

Proper motions from Gaia DR2 (April 2018) 
  vt=200 km/s ! μ~1 – 5 mas/yr    (d ~ 10 – 40 kpc) 
  expected error: σμ ~ 0.1mas/yr    (G ~ 17) 

! Trace substructures, outlier removal, and map MW potential  



Not all substructure is accreted – does pinpoint to 
interactions and mergers 

Li	et	al	2017	

Price-Whelan	et	al	2015	

Deason	et	al	2014	

Gomez	et	al.	(2016,	2017)	
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conserved quantities 

Nearby halo  

Memory of origin: retained in the motions 

"  100s of streams should cross Sun’s vicinity   
"  So far.. not much evidence (small samples) 

"  How to find more? ! Clustering in conserved quantities  
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Construction of a halo sample:  
TGAS x RAVE  

•  TGAS dataset is significant improvement, but need full 
phase-space information  ! cross-match to RAVE survey 

•  RAVE: spectra for 500k stars in southern sky: vlos, [M/H], 
spectrophotometric distance/parallax  

 (with TGAS priors, McMillan et al. 2017) 

      

! ~ 200,000 stars in common 

• Metallicity cut [M/H]cal < -1 dex  
to select preferentially halo 

• Remove stars with disk-like 
kinematics  

• 2-Gaussian decomposition  

! sample of 1307   
 genuine halo stars 
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Maarten Breddels 

Jovan Veljanoski 

Helmi, Veljanoski, Breddels et al. (2017), Veljanoski et al. (in prep) 



Statistical tests and searches of 
substructure 

Models predict  
•  several hundred moving groups or 

streams in Solar Neighbourhood      
! we search for excess clustering in 
velocity space with a correlation function 

•  substructure to be more easily apparent 
in Integrals of Motion space       
! we characterise the distribution, 
degree of clustering and establish 
significance 
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Velocity correlation function 

•  Very significant excess of pairs in data compared to random/smooth 
–  for Δ < 20 km/s, 5.5σ (120 pairs of stars in excess) 
–  for 20 < Δ < 40 km/s: 8.8σ  (328 pairs in excess) 

•  Also for very large separations, there is a significant excess  
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The amount of substructure: comparison to 
cosmological simulations 

•  Simulations of halos purely built via accretion show excess on small and large separations 
of similar amplitude 
–  some variation from halo to halo 

   !  Milky Way halo consistent with being fully built via accretion 

Cooper et al. (2010) 
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  ! very retrograde motions: 73% of all stars (for E > -1.3x105 km2/s2) 
 In randomised (re-shuffled) smooth distributions the probability of having so many loosely bound 
counter-rotating stars  is < 0.1% 

   retrograde  less-bound 
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Integrals of motion - space 



 Integrals of motion – space 

• Statistical comparison to smooth 
distributions allows identification of 
overdensities in E vs Lz 

• Structures at Lz ~-500 km/s kpc 
could be related to OmegaCen 
debris (Dinescu 2002) 

• VelHel-6: stars with disk-like 
kinematics but counter-rotating 
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Helmi, Veljanoski, Breddels et al. (2017), Veljanoski et al. (in prep) see also Myuoung et al. (2017) 





The retrograde halo in context  

•  Not common in cosmological 
simulations  
(e.g. Illustris; Vogelsberger et al. 2014) 

•  Less than 1% of MW-mass 
galaxies have more than 60% of 
the less bound stars on 
retrograde orbits  

  (here defined as r > 15 kpc) 
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Chemical abundances 
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•  C. Boeche chemical pipeline, not all stars have detailed abundances (SNR > 20, McMillan sample)  
•  Stars with Lz < 0 on average lower metallicity, both [M/H] and [Fe/H] 
•  May be some clumpiness (?) 
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Veljanoski (in prep) 



Chemical abundances: substructures 
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Probabilities drawn from 
overall population can be 
relatively small 

Similar behaviour in e.g. 
[Mg/Fe] 

Generally limited by 
number of stars 



PI – GA surveys:  
Vanessa Hill 





Clustering in integrals of motion (e.g. actions) maximal for right 
gravitational potential 

(DR2) 

Sanderson et al. (2014, 2016) 



Summary 
•  Halo substructure is useful for dynamics (dark matter) and merger history  

•  Photometric surveys mapped large structures in the outer halo 
•  TGAS x RAVE: excess of close velocity pairs and IoM space rich in substructure 

–  at level consistent with cosmological simulations of halos purely built via accretion 
–  Less-bound halo stars predominantly retrograde (significance > 99.9%) 
–  Many overdensities for more bound halo 

•  What’s coming: 
–  DR2 (April 2018) will be fantastic: proper motions and parallaxes for 1 billion stars! 
–  4MOST and WEAVE: spectroscopic follow 
–  Characterization of the stars in the structures found, e.g. chemical abundances, ages 
–  Numerical simulations for orbits, infall times, link to other structures in the halo  
–  constraints on characteristic mass and scale of Milky Way  

     


