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The Milky Way Bar
• Bulge looks like typical Box/Peanut 

bulge, as in external galaxies

• Shape naturally similar to N-body 
simulations where the central part 
buckles into a B/P bulge leaving a 
thinner long bar outside

• Based on RCG data from UKIDSS, 
VVV, 2MASS, with star-by-star 
extinction corrections

 B/P bulge and planar bar aligned,  
with bar angle 28-33 deg

 Estimated bar length 5.0±0.2 kpc, 
then corotation radius  6.0 kpc

Shape of the bulge: Wegg & OG ‘13

Shape of long bar: Wegg, OG, Portail ‘15
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Bulge Kinematics & Metallicity

• The BRAVA data for M-giant stars (L: Howard+’08, Kunder+’12) show nearly 
cylindrical rotation. 

• The cylindrical rotation is well fit by a boxy bulge formed from the disk. 
Simulations including a preexisting bulge of 8% (25%) of the disk (bulge) mass 
give sign. worse fit – most of the bulge made from the disk!? (L: Shen+’10) 

• The near-cylindrical rotation is seen for all metallicities up to [Fe/H]-1 in the 
ARGOS survey (R: Ness+’13). More metal-poor stars have higher dispersions. 
(also Babusiaux+’10, GIBS & GES surveys (Zoccali+’17, Rojas-Arriagada+’17).
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Overview: The Barred Milky Way

Sun’s Distance to Gal. Centre:      R0 = 8.2 kpc (±0.1) 

Circular velocity @ Sun          V0 = 238 km/s (+5,-15)

Solar motion wrt LSR                (11.1, 12.4, 7.2) km/s

Schoenrich+2010

Exponential disk scale-length      Rd = 2.4 kpc (±0.5)     
inwards from the Sun

Length of bar                                  Rb = 5.0 kpc (± 0.2)

Wegg, OG, Portail 2015

Corotation radius                            Rc = 6.1 kpc (±0.5)

Photom. bulge+bar Mbb = 1.9  1010 Msun (± 0.1)

Inner disk (<5.3 kpc)    Mid = 1.3  1010 Msun (± 0.1)

Portail, OG, Wegg, Ness 2017a

Inner B+B+ID stellar mass fraction                 65%

Bulge stellar mass fraction                               30%

More discussion on structural parameters:    Bland-Hawthorn+OG 2016 ARAA 



Data Constraints for Bulge/Bar Dynamics
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Magnitude Proper motion Mean radial Mean radial  velocities  
Distributions dispersion velocities and and dispersions as a 

dispersion function of distance

+ rotation  .  
. Curve

3D density 
of RCGs

• Star counts can be described by a density model. But stars move along their 
orbits. Therefore we need to combine with velocities.

• Star counts and velocity data need to be described by a dynamical model. 
• Even though not strictly true, need to start with equilibrium dynamical model.
• NB: importance of accurate data (e.g., density). As for DF|M  x,v, or , , 

These are (only) the data included by Portail, OG, Wegg, Ness 2017a



“Observe”

Compare 

&  quantify

N-body model Model observable Real data

Profit function

Change the particle weights
Syer & Tremaine (1996), De Lorenzi+(2007), 

Dehnen (2009), Portail+(2017a)

Made-to-Measure Particle Method
Need to fit many 1000s of observables (photometric, kinematics, population) 

in a rapidly rotating, complicated triaxial potential.
Only currently practical way is with Made-to-Measure Particle (M2M) Models 
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Some of the Data Fitted
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Portail, OG , Wegg, Ness 2017a

ARGOS: Observa-
tional selection 
criteria (Ness+’13) & 
mapping stars into 
distance bins using 
isochrones
Wavy structure of  
v() shows 
streaming velocity 
field within the bar

APOGEE predicted



Bar Pattern Speed

Good fits to kinematic observables for 35-42.5 
km/s/kpc, depending slightly on M/NRCG. Joint 
χ2 for ARGOS & BRAVA & syst. error estimate 
gives best value of pattern speed

b =39±3.5 km/s/kpc

Ωb influences bulge <v> and ; whereas mass in 
bulge region influences only . Independent 
measurement from future long bar kinematics.

In good agreement with recent analysis of gas 
dynamics by Sormani+2015.

With bar half-length Rb=5.0±0.2 kpc find 
corotation radius Rcr=6.1±0.5 kpc, R=1.2±0.1 
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Outer disk surface density meets bulge 
minor axis profile near end of bar; inner 
disk density nearly flat

The models measure stellar masses in 
the inner 5 kpc of

• 1.9  1010 M⊙ in the bulge and bar,

• 1.3  1010 M⊙ in the inner disk,      
with typical error 0.1  1010 M⊙

• 0.2  1010 M⊙ in the nuclear disk

(65% of total stellar mass)  

The total dynamical mass in the bulge 
WG13 volume is 1.85±0.05  1010 M⊙

(previously, 1.84±0.07, Portail+’15)
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Result from Model Fit:  Stellar Mass Structure
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Portail, OG, Wegg, Ness 2017a, MNRAS



• First dynamical evidence that the dark matter profile of the MW must have a core or 
shallow cusp:  we know the total*, stellar, and hence the dark matter mass in the bulge, 
and that inside the radius of the Sun.  The rotation curve wants it to be >NFW just 
inside the Sun, but then it must turn over. *Mb=(1.85±0.05)1010M⊙

• DM profile goes through local value from Piffl+’14 (not fitted), rises inwards, and flattens 
to a core or shallow cusp in the bulge region at 2 kpc.

• Independently argued by Binney & Piffl ‘17, from halo model fitted to local data, 
extrapolated to center, and using constraints from microlensing .

Ortwin Gerhard,  MPE Garching 

Dark Matter Density Profile
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Portail, OG, Wegg, Ness, 2017a 

Lund, Auguet 2017



IMF from Microlensing Time-Scales
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• For individual lenses, ML time-scale is 
degenerate between lens mass, 
distance, transverse velocity. 

• But we now have dynamical models 
providing the statistical distribution 
of distances and transverse velocities

• Also have  ML time-scales of  3560 
events from OGLE-III  
Wyrzykowski+’15

 Thus can adjust IMF, hence present-
day stellar mass function, to match 
these  time-scales using the model 

• Assume a broken power-law IMF:

 Prefers near-Kroupa IMF very similar 
to local IMF, despite high-, old, 
rapidly formed stars in the inner MW 

 Also prefers a low brown dwarf 
fraction

Wegg et al. 2017 ApJL



IMF from Microlensing Time-Scales
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SNd: Revisiting the Hercules Stream
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• Best model of P17a with increased resolution 
in the disk near Sun but no spiral arms

• Cross-matched with Gaia TGAS-RAVE-LAMOST
• Shows main bar-streaming component as well 

as low-V component consistent with (U,V) 
position of the Hercules stream

Perez-Villegas et al 2017

So far, the Hercules stream in the SNd was identified with OLR orbits near the Sun; 
this is incompatible with Ωb=40 km/s/kpc when the OLR is at 11.5 kpc (Dehnen’00, 
Antoja+’14,Monari+’16)



What Orbits Make Hercules in a Slow Bar

• These are orbits circulating the L4 and L5 Lagrange points. 
Good fraction go to both L4 and L5 i.e. are stochastic.

• They have long orbital periods in the rotating frame

“Hercules goes to see the Galactic bar”
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Perez-Villegas et al 2017
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This model predicts that 
(i) Hercules stream fades outwards of the Sun
(ii) Could be more prominent in the metal-rich stars
(iii) Even the structure of the ‘gap’ with radius  is not 

bad (NB: neither potential nor DF were made to 
match the disk though) Perez-Villegas et al 2017



Chemo-Dynamical Bulge Models

• The supersolar A bin has very pronounced bar ends. Contains younger stars? 
• B + A contribute roughly equal number of bar-supporting orbits. Stars in B have higher 

v, and could come from further out in the initial unstable disk  Ness+’13, di Matteo+’14

Portail et al 2017b• M2M particles carry [x, v, f(M)]
• MDF f(M) parameterized as MGE with indiv. Gaussians adjusted to ARGOS components
• Particles projected into obsv space using isochrones and M-dependent selection fn
• Particle metallicity weights wc adjusted by comparing with similar data in distance bins



The Intermediate-Metal-Poor Bin C
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• For x>1 kpc, bin-C stars are a thick disk bar with hz=500pc. For x<1 kpc, addl dense 
compt also seen in even more metal-poor stars. Could be bar-intrinsic, due to deep 
potential, or due to small classical bulge, or stellar halo. 

• Together with A,B it reproduces the vertex deviations in the bulge.

Portail et al 2017b 



Conclusions

• We live in a barred galaxy with a predominant B/P bulge. The bar 
region contains 2/3 of the MW’s stellar mass.

• Nearby rotation curve and low DM fraction in the bulge imply that 
the MW’s DM halo has a 2 kpc core

• The pattern speed from bulge/bar data (b =39±3.5 km/s/kpc) 
puts the OLR at 11 kpc. In this framework, the Hercules stream is 
from stars orbiting the bar’s Lagrange points

• The bulge/inner disk IMF statistically inferred from microlensing 
time-scales is near-Kroupa, indistinguishable from the local disk 
IMF, despite the bulge formed on -enhanced timescales

• The bulge/bar stellar populations broken up in metallicity bins 
have different orbit distributions. Find a strong metal-rich bar, a 
thick disk bar, and a dense central component in metal-poor stars
with unclear origin


