Ground-based follow up and their science cases

Sofia Feltzing
Lund Observatory

Gaia will "fix" the distances

GAIAS REACH

The Gaia spacecraft will use parallax and ultra-precise position measurements to obtain the distances and 'proper' (sideways) motions of stars throughout much of the Milky Way, seen here edge-on. Data from Gaia will shed light on the Galaxy's history, structure and dynamics.

10\% accuracy @ 100 pc

Previous missions could measure stellar distances with an accuracy of
10% only up to 100 parsecs*
_Sun

Gaia's limit for measuring
distances with an accuracy of 10% will be 10,000 parsecs
.

Gaia's offerings

Spectral type	\mathbf{V} [mag]	Vel. error [$\mathbf{k m ~ s}^{\mathbf{-}} \mathbf{]}$
B IV	7.5	1
G2V	11.3	15
KIIII-MP	12.3	1
(metal-poor)	15.2	15

- RVs to ~15.5 (tip RGB in the Bulge)
- Abundances to ~12.5 (a sun at 300 pc)

By ~2025

$R(\lambda / \Delta \lambda)$	λ-coverage	\# stars
>2000	full UV-NIR	>20 million
>5000	full UV-NIR	>20 million
20000	Call NIR triplet	15% of all Gaia stars
20000	UV	$\sim 4-6$ million
20	~ 5 millions*	+MOONS

Why all this effort?

Elmegreen \& Elmegreen (various)

MW and other galaxies

Papovich et al., 2015, ApJ 80326

MW and other galaxies

- Note - scale length of MW thick disk < thin disk
- In other galaxies not the case

Comerón et al., 2014, A\&A 571 A58
Bland-Hawthorn \& Gerhard, 2016, ARA\&A 54, 529

MW and other galaxies

Snaith et al., 2014, ApJL, 781, L31

MW progenitors

- More than half of the present-day mass was assembled in the 3 Gyrs between $z=2.5$ and $z=1$
- Build up of stellar mass at all radii until $z \approx 0.5$

Differing growth paths

Au19: Sharp increase when satellite hit. SFH shows stars accreted as well as formed in situ.

Au25: Slow, smooth build up of velocity dispersion. All stars formed in the galaxy and subsequently heated.


```
Two galaxies - at z=1 one is an
elliptical the other a disc galaxy, at z=0
they have the same B/T.
```

Grand et al. 2016 MNRAS 459199 Martig et al. 2012 ApJ 75626

Aim
 Establishing present day make-up of the Milky Way

All surveys have their own instrument design and available observing time

- \# stars
- stellar properties
- quality of data

Resolving

 power
Wavelength coverage

4MOST:

Ructhi et al. 2016 MNRAS 4612174 Hansen et al. 2015 AN 336665

MOONS: 0.7-0.9, 1.17-1.26, 1.52-1.63 $\mu \mathrm{m}$ APOGEE: $1.51-1.70 \mu \mathrm{~m}$

www.ing.iac.es/weave/

- WEAVE GA survey facility will provide ~ 4 million stellar spectra
- I 000 fibres, pick and place positioner, closest separation ~ 60 ", reconfiguration time ~I h during observations with the other plate
- PDR completed 2013; system integration started in 2016; operations start 2018; 5 yr survey

WEAVE disk dynamics

survey

- complementary to Gaia \& 4MOST; competitive with APOGEE
- Inner MW disk survey

- low resolution in $20^{\circ}<1<135^{\circ}$ and $|\mathrm{b}|<6^{\circ}$
- only red clump stars (ie also when Gaia π are bad you get distance)
- detailed study of the effects of the bar and spiral arms on stellar dynamics in the inner Galaxy - understand secular evolution
- Outer MW disk survey
- Iow resolution in $135^{\circ}<l<225^{\circ}$ up to \mid b| 10° but for \mid b $\mid>5^{\circ}$ high resolution
- effects of mergers and interactions of satellites or dark matter clumps on the disk becomes important in the outer disk
- means flaring, corrugation waves, the presence of accretion debris, etc, at the interface between the thin, thick disk and the halo
- interface between the disk and the halo is particularly important there, hence higher Galactic latitudes must be probed

Famaey et al. 2016 SF2A 281
de Jong et al. (SPIE 2016) Walcher et al. (SPIE 2016)
https://www.4most.eu
PI: Roelof de Jong

MW science in a nutshell

Helmi
Irwin
Christlieb

- Near-field cosmology tests

Chiappini Minchev Starkenburg Bergemann

- Characterising the major Milky Way components
- the formation of the Bulge and the link to the high Z universe
- the potential, substructure and influence of the central bar
- chemodynamical analysis of the thick \& thin disks formation history
- The Galactic Halo and beyond
- full chemodynamical analysis of the Magellanic Clouds
- the properites of large scale streams (e.g. Sgr) in the Halo
- probing the extent and properties of the stellar halo (e.g. RGBs, BHBs)
- Extreme metal poor stars
- characterising early chemical evolution in the Halo and Bulge

Some numbers

Low resolution surveys
>1.8 million (goal 3) objects with LRS
All halo giants with $15<\mathrm{V}<20$
> 10000 square degrees, contiguous
$\sigma(\mathrm{RV})<2 \mathrm{~km} / \mathrm{s}$ to match Gaia's error in parallax
>15 million (goal 20) objects with low resolution spectra
$14<$ V < 20
Several sub-surveys to optimise science
$\sigma(R V)<2 \mathrm{~km} / \mathrm{s}$ to match Gaia's error in parallax
precision ~0.1-0.2 dex

High resolution surveys
100000 genuine halo stars with HRS (catalogue larger but contaminated) $12<$ V < 16
Sparse sample over 14000 sq deg
Defines blue arm of HRS in 4MOST 20 elements

Goal 4 million stars with high resolution spectra $14<$ V < 16
Evenly distributed

Defines green and red arm of HRS in 4MOST 20 elements precision ~0.03 dex (acc. 0.07 dex)

Worries

Things to consider before interpreting

First example

Selection function

- Significant structure, including flaring
- Also seen in APOGEE data for giant stars
- Models can explain this flaring

Xiang et al. 2017 arXiv:1707.06236
Minchev 2017 arXiv:1701.07034

Selection function

- LAMOST MSTO age-map
- several selection functions at play
- LAMOST target selectic weather/fibre allocatior
- analysis of MSTO stars possible for certain (inf, stellar parameters
- How do you combine this to understand what the map actually is telling you?
- All surveys need to carefully monitor and document their selection function(s)

Second example

Precision \& accuracy

- $\Delta=0.45 \mathrm{~km} \mathrm{~s}^{-1} \quad \sigma=1.75 \mathrm{~km} \mathrm{~s}^{-1}$ (GALAH-RAVE)
- $\Delta=0.05 \mathrm{~km} \mathrm{~s}^{-1} \quad \sigma=0.81 \mathrm{~km} \mathrm{~s}^{-1}$ (GALAH-APOGEE)
- $\sigma R V \propto R^{-3 / 2}(\longrightarrow 4.3$ times as large error in RAVE as in GALAH)
- Median scatter in APOGEE single stars $\sim 0.2 \mathrm{~km} \mathrm{~s}^{-1}$
- Offsets always need to be understood
- For elemental abundances the situation will be more acute

Third example

Biffusion changes

abundance patterns

- Effects of stellar evolution.
- Evidence that selective diffusion occurs in stars at MS and TOP in globular clusters and M67.
- Up to 0.2 dex.

Önehag et al. 2014 A\&A 562 A102
Korn et al. 2007 ApJ 671402
Gruyters et al. 2013 A\&A 555 A31

Third example

Biffusion changes

abundance patterns

- Effects of stellar evolution.
- Evidence that selective diffusion occurs in stars at MS and TOP in globular clusters and M67.
- Up to 0.2 dex.

Önehag et al. 2014 A\&A 562 A102
Korn et al. 2007 ApJ 671402
Gruyters et al. 2013 A\&A 555 A31

This is just one example NLTE and 3D atmospheres

Summary

- Past, on-going and future surveys will provide spectra for 10 s of millions of stars in the near future enabling exciting research
- The spectra will provide RVs and from them we can derive elemental abundances
- There are several challenges that need to be addressed:
- Huge datasets requires "new" methods for abundance analysis, e.g. Cannon
- Understanding the influence of the selection functions on the results is crucial
- Many surveys = need to ensure all data are on the same scale to be able to combine the data for a deeper understanding of the Milky Way

Rough comp. of depths

Gaia
2000
5/7000
20000

Diffuse interstellar bands in

 spectroscopic surveys- DIBs - weak but numerous absorption lines seen in spectra of background stars
- allows to reconstruct absorption sites along the line of sight
- radial velocity shift can constrain placement of multiple clouds along each line of sight
- picked up in LAMOST spectra w Cannon SDSS DIBs absorption map

Zwitter \& Kos 2016 Mem. S.A.It. Vol. 86541
Puspitarini et al. 2015A\&A 573 A35 Lan et al. 2015 MNRAS 4523629

Precision required

Example of typical high precision/accuracy data.

4MOST 2 h exposure shall give:

- LR RVs at $\mathrm{V}=20$ (SNR=10/Å)
- HR abundances at $\mathrm{V}=15.5$ (SNR=140/Å)

Plot based on data from Klaus Furhmann's studies (priv. comm.)

Sheer number do not

 beat low precision

- Both measure a gap of 0.2 dex
volume to cover

\times ages
 dynamics

\# stars
 in your

survey

- One needs < 100 stars, the other >100 000 stars

