Ground-based follow up and their science cases

Sofia Feltzing Lund Observatory

Gaia will "fix" the distances

GAIA'S REACH

The Gaia spacecraft will use parallax and ultra-precise position measurements to obtain the distances and 'proper' (sideways) motions of stars throughout much of the Milky Way, seen here edge-on. Data from Gaia will shed light on the Galaxy's history, structure and dynamics.

10% accuracy @ 100 pc

Previous missions could measure stellar distances with an accuracy of 10% only up to 100 parsecs* LSun

Galactic Centre

10% accuracy @ 10 kpc

Gaia's limit for measuring distances with an accuracy of 10% will be 10,000 parsecs Gaia will measure proper motions accurate to 1 kilometre per second for stars up to 20,000 parsecs away

*1 parsec = 3.26 light years

From A. Helmi @ ESO in 2020

Gaia's offerings

Spectral type	V [mag]	Vel. error [km s ⁻¹]	
BIV	7.5		
	11.3	15	
G2V	12.3	I	
	15.2	15	
KIIII-MP	12.8		
(metal-poor)	15.7	15	

Need more (and longer) spectra at fainter magnitudes

- RVs to ~15.5 (tip RGB in the Bulge)
- Abundances to ~12.5 (a sun at 300 pc)

http://www.cosmos.esa.int/web/gaia/science-performance Recio-Blanco et al. 2016 A&A <u>585</u> A93

By ~2025

R (λ / Δλ)	λ-coverage	# stars	
> 2000	full UV-NIR	> 20 million	
> 5000	full UV-NIR	> 20 million	*A
	Call NIR triplet	15% of all Gaia stars	
20 000	UV	~4-6 million	
20 000	NIR	~5 millions*	+ MOONS

Why all this effort?

 $Age_{Universe} \approx 7 \text{ Gyr}$

Elmegreen & Elmegreen (various)

MW and other galaxies

Papovich et al., 2015, ApJ <u>803</u> 26

MW and other galaxies

- Note scale length of MW thick disk < thin disk
- In other galaxies not the case

Comerón et al., 2014, A&A <u>571</u> A58 Bland-Hawthorn & Gerhard, 2016, ARA&A 54, 529

MW and other galaxies

Snaith et al., 2014, ApJL, 781, L31

MW progenitors

• More than half of the present-day mass was assembled in the 3 Gyrs between z = 2.5 and z = 1

• Build up of stellar mass at all radii until $z \approx 0.5$ van Dokkum et al., 2013, ApJL <u>771</u> L35 Diemer et al. arXiv:1701.02308

Differing growth paths

Au19: Sharp increase when satellite hit. SFH shows stars accreted as well as formed in situ.

Au25: Slow, smooth build up of velocity dispersion. All stars formed in the galaxy and subsequently heated.

Two galaxies - at z=1 one is an elliptical the other a disc galaxy, at z=0 they have the same B/T.

Grand et al. 2016 MNRAS <u>459</u> 199 Martig et al. 2012 ApJ <u>756</u> 26

Aim Establishing present day make-up of the Milky Way

Wavelength coverage

4MOST: Ructhi et al. 2016 MNRAS <u>461</u> 2174 Hansen et al. 2015 AN <u>336</u> 665

MOONS: 0.7-0.9, 1.17-1.26, 1.52-1.63 µm APOGEE: 1.51 – 1.70 µm

- WEAVE GA survey facility will provide ~4 million stellar spectra
- 1000 fibres, pick and place positioner, closest separation ~60", reconfiguration time
 ~1 h during observations with the other plate
- PDR completed 2013; system integration started in 2016; operations start 2018; 5 yr survey

WEAVE disk dynamics

- complementary to Gaia & 4MOST; competitive with APOGEE
- Inner MW disk survey
 - low resolution in $20^{\circ} < I < 135^{\circ}$ and $|b| < 6^{\circ}$

survey

- only red clump stars (ie also when Gaia π are bad you get distance)
- detailed study of the effects of the bar and spiral arms on stellar dynamics in the inner Galaxy — understand secular evolution

• Outer MW disk survey

- low resolution in $135^{\circ} < l < 225^{\circ}$ up to $|b| \sim 10^{\circ}$ but for $|b| > 5^{\circ}$ high resolution
- effects of mergers and interactions of satellites or dark matter clumps on the disk becomes important in the outer disk
- means flaring, corrugation waves, the presence of accretion debris, etc, at the interface between the thin, thick disk and the halo
- interface between the disk and the halo is particularly important there, hence higher Galactic latitudes must be probed
 Famaey et al. 2016 SF2A 281

de Jong et al. (SPIE 2016) Walcher et al. (SPIE 2016)

https://www.4most.eu PI: Roelof de Jong

- 4MOST survey facility will go on the VISTA telescope
- Low res: 1600 and High res 800 HR fibres, echidna positioner, reconfigure < 2min
- PDR passed in June 2016; FDR early 2018; operations start 2022
- 5+5 yr all-sky survey
- Consortium surveys (70% time first 5 yrs)
- ~15 million spectra for community proposals
- Still possible to join consortium

MW science in a nutshell

Near-field cosmology tests

- overall mass, extent and structure of the MW dark matter halo

- the nature of dark matter from tidal stream properties

Characterising the major Milky Way components

- the formation of the Bulge and the link to the high Z universe
- the potential, substructure and influence of the central bar
- chemodynamical analysis of the thick & thin disks formation history

The Galactic Halo and beyond

- full chemodynamical analysis of the Magellanic Clouds
- the properites of large scale streams (e.g. Sgr) in the Halo
- probing the extent and properties of the stellar halo (e.g. RGBs, BHBs)

• Extreme metal poor stars

- characterising early chemical evolution in the Halo and Bulge

4MOST Science Team, Feltzing et al 2017 arXiv:1708.08884

Chiappini Minchev Starkenburg Bergemann Bensby

Helmi

Irwin

Christlieb

Cioni

Some numbers

Low resolution surveys

>1.8 million (goal 3) objects with LRS
All halo giants with 15 < V < 20
> 10 000 square degrees, contiguous

 $\sigma(RV) < 2$ km/s to match Gaia's error in parallax

>15 million (goal 20) objects with low resolution spectra

14 < V < 20

Several sub-surveys to optimise science

 σ (RV) < 2 km/s to match Gaia's error in parallax precision ~0.1-0.2 dex

High resolution surveys

100 000 genuine halo stars with **HRS** (catalogue larger but contaminated) 12 < V < 16

Sparse sample over 14 000 sq deg

Defines blue arm of HRS in 4MOST 20 elements

Goal **4 million** stars with **high resolution spectra** 14 < V < 16 Evenly distributed

Defines green and red arm of HRS in 4MOST 20 elements precision ~0.03 dex (acc. 0.07 dex)

4MOST Science Team, Feltzing et al 2017 arXiv:1708.08884

Halo

Worries Things to consider before interpreting

First example

Selection function

LAMOST MSTO sample

- Significant structure, including flaring
- Also seen in APOGEE data for giant stars
- Models can explain this flaring

Xiang et al. 2017 arXiv:1707.06236 Minchev 2017 arXiv:1701.07034

Selection function

• LAMOST MSTO age-map

- several selection functions at play
- LAMOST target selectic weather/fibre allocation
- analysis of MSTO stars
 possible for certain (infersion stellar parameters
- How do you combine this to understand what the map actually is telling you?
- All surveys need to carefully monitor and document their selection function(s)

Xiang et al. 2017 arXiv:1707.06236

Second example

Precision & accuracy

- $\Delta = 0.45 \text{ km s}^{-1} \sigma = 1.75 \text{ km s}^{-1}$ (GALAH-RAVE)
- Δ =0.05 km s⁻¹ σ =0.81 km s⁻¹ (GALAH-APOGEE)
- $\sigma RV \propto R^{-3/2}$ (—> 4.3 times as large error in RAVE as in GALAH)
- Median scatter in APOGEE single stars ~0.2 km s⁻¹
- Offsets always need to be understood
- For elemental abundances the situation will be more acute

Martell et al. 2017 MNRAS 465 3203

Third example Diffusion changes abundance patterns

- Effects of stellar evolution.
- Evidence that selective diffusion occurs in stars at MS and TOP in globular clusters and M67.
- Up to 0.2 dex.

Önehag et al. 2014 A&A <u>562</u> A102 Korn et al. 2007 ApJ <u>671</u> 402 Gruyters et al. 2013 A&A <u>555</u> A31

Third example Diffusion changes abundance patterns

- Effects of stellar evolution.
- Evidence that selective diffusion occurs in stars at MS and TOP in globular clusters and M67.
- Up to 0.2 dex.

Önehag et al. 2014 A&A <u>562</u> A102 Korn et al. 2007 ApJ <u>671</u> 402 Gruyters et al. 2013 A&A <u>555</u> A31 This is just one example -NLTE and 3D atmospheres

Summary

Need to construct this slide. Venn diagram? Any references? Two Feltzing proceedings?

- Past, on-going and future surveys will provide spectra for 10s of millions of stars in the near future enabling exciting research
- The spectra will provide RVs and from them we can derive elemental abundances
- There are several challenges that need to be addressed:
 - Huge datasets requires "new" methods for abundance analysis, e.g. Cannon
 - Understanding the influence of the selection functions on the results is crucial
 - Many surveys = need to ensure all data are on the same scale to be able to combine the data for a deeper understanding of the Milky Way

Limiting magnitudes

Rough comp. of depths

Diffuse interstellar bands in spectroscopic surveys

- DIBs w seen in :
- allows to the line (
- radial ve of multij
- picked ι

SDSS DIBs absorption map

16 Mem. S.A.It. Vol. <u>86</u> 541 rini et al. 2015A&A <u>573</u> A35 al. 2015 MNRAS <u>452</u> 3629 Ho et al. 2017 ApJ <u>836</u> 5

Precision required

Example of typical high precision/accuracy data.

4MOST 2h exposure shall give:

- LR RVs at V=20 (SNR=10/Å)

– HR abundances at V=15.5 (SNR=140/Å)

Plot based on data from Klaus Furhmann's studies (priv. comm.)

Sheer number do not beat low precision

- Both measure a gap of 0.2 dex
- One needs < 100 stars, the other >100 000 stars

Lindegren & Feltzing 2013 A&A 553 A94