James Binney University of Oxford

Dynamically modelling the MW

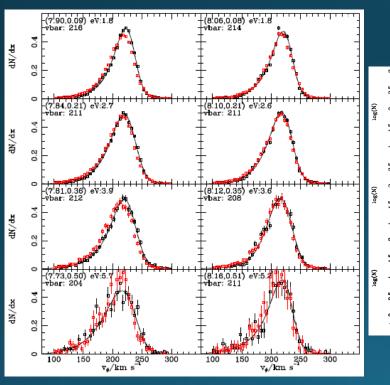
Outline

- The challenge
- Equilibrium dynamical models
- Axisymmetric models
- Including the bar
 - M2M models
 - Torus models
- Why orbit-based models of the solar nhd are problematic
- Conclusions

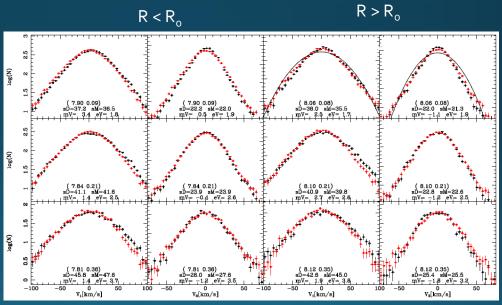
The challenge

- Spectacular data sets are flooding in
 - Gaia + spectroscopic surveys
 - APOGEE, RAVE, GES, LAMOST, Galah, WEAVE,....
- We want to learn how our Galaxy formed
 - First we must establish how it is structured now
- Each survey has non-trivial selection function
 - It images the MW through a distorting lens
- Also most interesting parts of the MW obscured by dust
- So non-trivial to infer MW's structure from catalogues
- We must build a model that's consistent with catalogues
 - This model will embody all we know about the MW

Models


- We have to model stars & gas in parallel
 - Don't forget: since 1950s radio observations of HI, CO, etc have provided crucial constraints on MW's gravitational field g(x)
- >90% of MW's mass is dark
 - We must model DM too!
- We have to track DM from its contribution to g(x)
 - Can only infer g(x) from kinematics to the extent that the MW is in equilibrium
- So we must start from equilibrium dynamical models
 - Later we will add non-equilibrium features (spirals, warp, streams,..) as perturbations

Jeans theorem

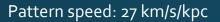

- Given equilibrium, Jeans' theorem collapses 6d phase space to 3d orbit space
- In principle infinite freedom in choice of constants of motion to use as coordinates of orbit space
 - But in practice only one rational choice:
 - action integrals J
- We now have axisymmetric models specified by analytic
 - Extended Distribution Functions (EDFs) f_{*}(J,age,[Fe/H])
 - f_{DM}(J)
 - (B & McMillan 2011; Bovy & Rix 2013; Sanders & B 2015; Penoyre+ 2015)

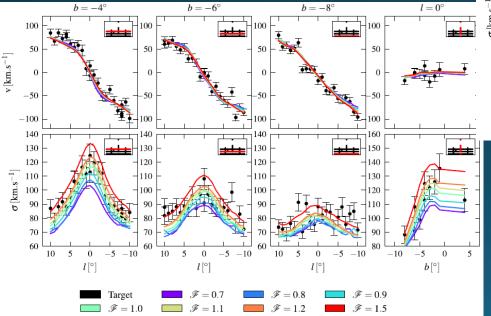
Rave kinematics Binney, Burnett + RAVE 2014

- Binney (2012) fitted disc f(J) to GCS data (s <~ 0.1 kpc)
- Binney + (2014) tested its *predictions* for kinematics of RAVE stars in 8 volumes with s <~ 2 kpc

Cool dwarfs

Self-consistent multi-component models


- ullet First models used fixed parametrised $ar{arPhi}$ but current models have self-consistent $ar{arPhi}$
- Major advantages of using actions:
 - Ease of constructing models that contain many populations (stars of each [mass, age & chemistry], DM, white dwarfs, n-stars,...)
 - ullet Ease of finding self-consistent gravitational potential $\Phi(\mathsf{x})$
 - Penoyre+ 2015; B & Piffl 2015; Cole & B 2016


Non-axisymmetry

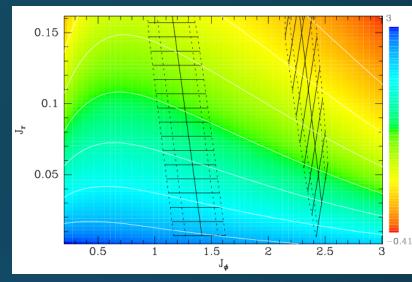
- MW is a barred spiral
 - ullet Simplest ansatz is that arPhi steady in rotating frame
- Models to date exploit Staeckel Fudge, which gives J(x,v)
 - Converts f(J) to f(x,v) so can get v-distribution & ρ by integrating over v
- ullet Unfortunately SF not available for Φ with figure rotation
- Without SF can only build orbit-based models
 - N-body, M2M, Schwarzschild, Torus
- We treat a galaxy as a sum of orbits

M₂M models

- (Syer & Tremaine 1996; De Lorenzi+ 2007; Long+ 2013; Martinez-Valpuesta 2012; Portail+ 2015)
- Let N-body model develop a bar
- Vary particle weights while integrating eqs of motion to optimize fits to observables
- ullet Occasionally update arPhi
- Has produced very convincing models of bar/bulge

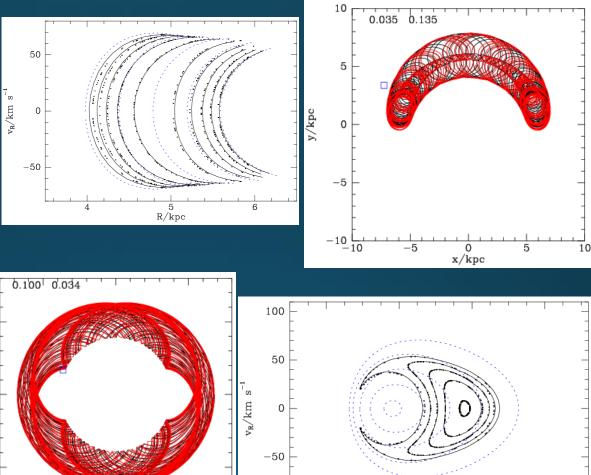
 $b = -4^{\circ} \qquad b = -6^{\circ} \qquad b = -8^{\circ} \qquad l = 0^{\circ}$ $100 \qquad 50 \qquad 50 \qquad 50 \qquad 50 \qquad 50$ $-50 \qquad 100 \qquad 100 \qquad 100 \qquad 100$ $140 \qquad 130 \qquad 130 \qquad 130 \qquad 130$ $120 \qquad 120 \qquad 120 \qquad 140$ $130 \qquad 120 \qquad 130 \qquad 130$ $120 \qquad 120 \qquad 130 \qquad 130$ $120 \qquad 100 \qquad 100 \qquad 100$ $100 \qquad$

Decreasing halo mass in bulge

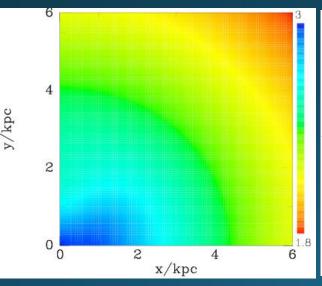

Increasing stellar mass

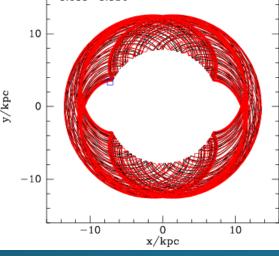
Schwarzschild & Torus modelling

- Schwarzschild (1979) is industry standard for models of early-type galaxies
- ullet Choose arPhi and integrate an orbit library
 - then choose weights to fit data
- For many reasons it's best to represent orbits with tori
 - Structures with known actions J equipped with angle variables
 - A torus encodes every orbit J to all eternity in ~100 numbers
 - Torus Mapper (B & McMillan 2016) generates torus more quickly than a long orbit integration
 - TM's methods return anything you might compute ($[\rho(x), v(x), ...]$
 - Can now relax Φ to self-consistency
- Traditional representation of orbits as time series not competitive

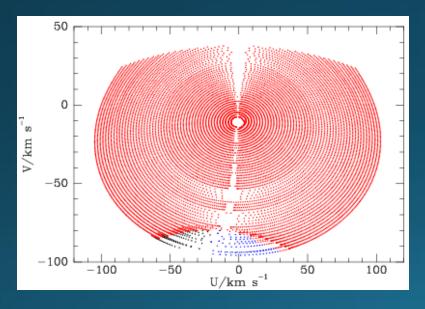

Orbit families

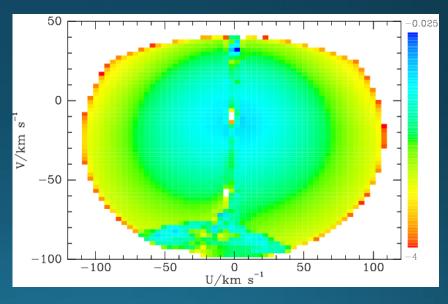
- Once Φ is non-axisymmetric, cannot ignore that there's >1 orbit family
- Each family has its own angle-action coordinates
- Orbits that belong to >1 family are "chaotic"
- Families normally considered to arise from "resonant trapping"
- In a realistic Galactic bar (Sormani+2016) corotation and Lindblad resonances have significant zones of entrapment
- Using perturbation theory we can construct tori for trapping zones


Binney 2017

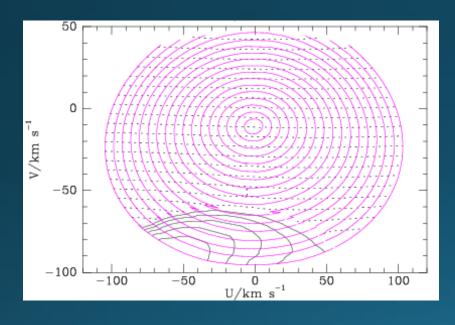

Nonaxisymmetri c tori (Binney 2017)

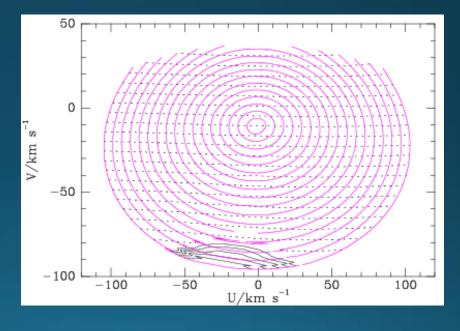
-100


R/kpc



Local v-space from orbits


- Individual tori are beautiful
- But still hard to recover kinematics of solar nhd
 - Uniform grid in action space maps to an irregular grid in velocity space
 - Density of an orbit diverges at its edges
 - So small # of orbits contribute heavily to certain Vs -> enhanced Poisson noise



New constants of motion

- Determine map v -> J
- Can then evaluate f(v) (Schoenrich & McMillan 2016)

Conclusions

- Only by building models can we understand how the MW is structured
- We should start from equilibrium dynamical models
- Then Jeans theorem puts MW into 3d orbit space
- Actions are the preferred coordinates for orbit space
- DFs f(J) for DM and various stellar types readily combined to build multi-component, self-consistent axisymmetric models
- The bar forces recognition of several orbit families, each with its own AA variables
- Reluctantly accept that barred models cannot be based on J(x,v)
- Excellent models of bar/bulge constructed by M2M technique
- Torus modelling supersedes Schwarzschild modelling as an alternative
- But any orbit model liable to excessive Poisson noise
- Use tori to determine map v -> J at various x