Bayesian inference using Gaia data

Coryn Bailer-Jones Max Planck Institute for Astronomy, Heidelberg

What is Bayes?

- an approach to learning (= inference)
- given data on a phenomenon, determine how well a model explains the data
- "how well" is quantified using probabilities

Priors and subjectivity

- learning: reconcile new data with existing knowledge
- "existing knowledge" = prior
 - e.g. limits, monotonicity, smoothness
- subjective, just like many other data analysis steps
 - what data do we decide to collect?
 - what data do we discard?
 - what assumptions and approximation do we make?
- smooth transition from data-dominated to prior-dominated

Inference of distance from a parallax

Possible distance priors

Prior PDF

uniform in r uniform space density exponentially decreasing space density

Test using simulations (GUMS)

Fractional distance error vs. fractional parallax uncertainty Many Gaia parallaxes will be poor

Coryn Bailer-Jones, MPIA

Inference of all six Galactic coordinates

Coryn Bailer-Jones, MPIA

Distance information from spectra, colours, and magnitudes

Improved distances to stars common to TGAS and RAVE

Paul J. McMillan^{1*}, Georges Kordopatis², Andrea Kunder³, James Binney⁴, Jennifer Wojno³, Tomaž Zwitter⁵, Matthias Steinmetz³, Joss Bland-Hawthorn⁶, Brad K. Gibson⁷, Gerard Gilmore⁸, Eva K. Grebel⁹, Amina Helmi¹⁰, Ulisse Munari¹¹, Julio F. Navarro¹², Quentin A. Parker^{13,14}, George Seabroke¹⁵, Rosemary F. G. Wyse¹⁶

IMPROVING *GAIA* PARALLAX PRECISION WITH A DATA-DRIVEN MODEL OF STARS

LAUREN ANDERSON,¹ DAVID W. HOGG,^{1, 2, 3, 4} BORIS LEISTEDT,^{2, 5} ADRIAN M. PRICE-WHELAN,⁶ AND JO BOVY^{1, 7, 8}

HIERARCHICAL PROBABILISTIC INFERENCE OF THE COLOR-MAGNITUDE DIAGRAM AND SHRINKAGE OF STELLAR DISTANCE UNCERTAINTIES Boris Leistedt^{1,2}, David W. Hogg^{1,3,4}

Teff, Av etc. from BP/RP, parallax with HRD prior

Coryn Bailer-Jones, MPIA

3D dust inference from stellar extinction

Smoothness constraint: Gaussian Process prior

3D dust inference (APOGEE red clump stars)

Rezaei Kh. et al. 2017

Dust clouds in/towards Orion from TGAS

Rezaei Kh. et al. 2017

Dust clouds in/towards Orion from TGAS

Conclusions

- "Bayes" is an approach to learning about models from data
 - remains consistent in limit of poor data
- Priors
 - incorporate other knowledge you have
 - ▶ flexible: theoretical, empirical, (non)-parametric, ...
 - are just one choice of many we must make when analysing data
- Many applications, esp. data when noisy/incomplete
 - distances, kinematics, stellar parameters, dust mapping, TGAS, ...