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What is Bayes?

• an approach to learning (= inference)

• given data on a phenomenon, determine how well a model 
explains the data

• “how well” is quantified using probabilities
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Priors and subjectivity

• learning: reconcile new data with existing knowledge

• “existing knowledge” = prior

‣ e.g. limits, monotonicity, smoothness

• subjective, just like many other data analysis steps

‣ what data do we decide to collect?

‣ what data do we discard?

‣ what assumptions and approximation do we make?

• smooth transition from data-dominated to prior-dominated
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Inference of distance from a parallax
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Possible distance priors
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Many Gaia parallaxes will be poor
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Inference of all six Galactic coordinates
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Figure 6: Corner plot for the inferred six-dimensional phase space informa-
tion of TYC 6676-44-1. The positional coordinates x, y, and z are given in
units of kpc, the space velocity components U , V , and W in units of km s�1.
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Distance information from spectra, colours, 
and magnitudes
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Improved distances to stars common to TGAS and RAVE
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ABSTRACT
We combine parallaxes from the first Gaia data release with the spectrophotometric distance
estimation framework for stars in the fifth RAVE survey data release. The combined distance
estimates are more accurate than either determination in isolation – uncertainties are on aver-
age two times smaller than for RAVE-only distances (three times smaller for dwarfs), and 1.4
times smaller than TGAS parallax uncertainties (two times smaller for giants). We are also
able to compare the estimates from spectrophotometry to those from Gaia, and use this to
assess the reliability of both catalogues and improve our distance estimates. We find that the
distances to the lowest log g stars are, on average, overestimated and caution that they may not
be reliable. We also find that it is likely that the Gaia random uncertainties are smaller than
the reported values. As a byproduct we derive ages for the RAVE stars, many with relative
uncertainties less than 20 percent. These results for 219 566 RAVE sources have been made
publicly available, and we encourage their use for studies that combine the radial velocities
provided by RAVE with the proper motions provided by Gaia. A sample that we believe to be
reliable can be found by taking only the stars with the flag notification ‘flag any=0’.

Key words: Galaxy: fundamental parameters – methods: statistical – Galaxy: structure –
Galaxy: kinematics and dynamics

1 INTRODUCTION

ESA’s Gaia mission (Gaia Collaboration et al. 2016a) is an enor-
mous project that is revolutionising Milky Way astronomy. Gaia
will provide a wide range of data about the stars of the Milky Way,
including photometry and spectroscopy. However it is the astrom-
etry – and in particular the parallaxes – that Gaia determines that

? E-mail: paul@astro.lu.se

are the cause of the most excitement. It is very di�cult to determine
the distances to stars, and not knowing the distance to a star means
that not only does one not know where it is, but also how fast it is
moving, even if the proper motion of the star is known.

The RAVE survey (Radial Velocity Experiment: Steinmetz
et al. 2006) is a spectroscopic survey that took spectra for ⇠500 000
stars. From these one could determine for each star its line-of-sight
velocity and the structural parameters, such as their e↵ective tem-
peratures (Te↵), surface gravities (log g) and metallicities ([M/H]).

c� 2017 The Authors
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ABSTRACT

We present a hierarchical probabilistic model for improving geometric
stellar distance estimates using color–magnitude information. This is
achieved with a data driven model of the color–magnitude diagram,
not relying on stellar models but instead on the relative abundances of
stars in color–magnitude cells, which are inferred from very noisy mag-
nitudes and parallaxes. While the resulting noise-deconvolved color–
magnitude diagram can be useful for a range of applications, we focus
on deriving improved stellar distance estimates relying on both par-
allax and photometric information. We demonstrate the e�ciency of
this approach on the 1.4 million stars of the Gaia TGAS sample that
also have APASS magnitudes. Our hierarchical model has 4 million
parameters in total, most of which are marginalized out numerically or
analytically. We find that distance estimates are significantly improved
for the noisiest parallaxes and densest regions of the color–magnitude
diagram. In particular, the average distance signal-to-noise ratio and
uncertainty improve by 19 percent and 36 percent, respectively, with
8 percent of the objects improving in SNR by a factor greater than 2.
This computationally e�cient approach fully accounts for both paral-
lax and photometric noise, and is a first step towards a full hierarchical
probabilistic model of the Gaia data.

Keywords: stars: distances, stars: C–M diagrams, methods: statistical.

1. INTRODUCTION

Gaia and LSST will soon provide parallaxes for many millions of stars inhabiting
our Galaxy (Gaia Collaboration et al. 2016; LSST Science Collaboration et al. 2009).
However, parallax measurements for most of these objects are very noisy due to paral-
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ABSTRACT

Converting a noisy parallax measurement into a posterior belief over distance requires

inference with a prior. Usually this prior represents beliefs about the stellar density

distribution of the Milky Way. However, multi-band photometry exists for a large frac-

tion of the Gaia TGAS Catalog and is incredibly informative about stellar distances.

Here we use 2MASS colors for 1.4 million TGAS stars to build a noise-deconvolved

empirical prior distribution for stars in color–magnitude space. This model contains

no knowledge of stellar astrophysics or the Milky Way, but is precise because it accu-

rately generates a large number of noisy parallax measurements under an assumption

of stationarity; that is, it is capable of combining the information from many stars.

We use the Extreme Deconvolution (XD) algorithm—an Empirical Bayes approxi-

mation to a full hierarchical model of the true parallax and photometry of every

star—to construct this prior. The prior is combined with a TGAS likelihood to infer

a precise photometric parallax estimate and uncertainty (and full posterior) for every

star. Our parallax estimates are more precise than the TGAS catalog entries by a

median factor of 1.2 (14% are more precise by a factor > 2) and are more precise

than previous Bayesian distance estimates that use spatial priors. We validate our

parallax inferences using members of the Milky Way star cluster M67, which is not

visible as a cluster in the TGAS parallax estimates, but appears as a cluster in our
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3D dust inference from stellar extinction

fn /
Z r=rn

r=0
⇢(r)dr

Measurements: {An(rn)± �n}

Model: An = fn +N (0,�2
n)
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Smoothness constraint: Gaussian Process prior

P (⇢i, ⇢j) ⇠ N (0, ci,j)

ci,j = ✓ exp

✓
� |ri � rj |2

�2
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3D dust inference (APOGEE red clump stars)

Input&Ex)nc)on&(mag)&

Rezaei Kh. et al. 2017
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Dust clouds in/towards Orion from TGAS
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Dust clouds in/towards Orion from TGAS

Rezaei Kh. et al. 2017
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Conclusions

• “Bayes” is an approach to learning about models from data

‣ remains consistent in limit of poor data

• Priors 

‣ incorporate other knowledge you have

‣ flexible: theoretical, empirical, (non)-parametric, …

‣ are just one choice of many we must make when analysing data

• Many applications, esp. data when noisy/incomplete

‣ distances, kinematics, stellar parameters, dust mapping, TGAS, …


