ICE PARTICLE PROPERTIES IN ARCTIC CIRRUS

In situ balloon measurements

Thomas Kuhn, LTU SRS Meeting Lund, March 16, 2021

Ice particle properties in Arctic cirrus In situ balloon measurements

Balloon launch from Esrange Space Center

- Veronika Wolf, Mathias Milz (LTU),
- Peter Völger (IRF),
- Martina Krämer, Christian Rolf (FZJ),

ECHNOLOGY

Andrew Heymsfield (NCAR)

Cirrus: ice clouds in upper troposphere

- ~4 − 11 km; ~-40 − -70°C
- Often; large areas
- Thin, translucent (vis), absorbing (IR)
 Observation:
- In-situ; remotely
- Few in situ in Arctic

Balloon-borne in-situ measurements

- Series of balloon launches (2012 - 2018)
- Esrange Space Center, Kiruna
- Funded by SNSA

Balloon launches from Esrange Space Center

Ice particle in-situ imaging: Balloon-borne Ice Cloud particle Imager **B-ICI**

B-ICI Kuhn, T., and A. J. Heymsfield (2016), Pure Appl. Geophys., 173 (9), doi: 10.1007/s00024-016-1324-x. instrument uncovered Particles...

- "fall" through the inlet
- collide with a film tape
- imaged on the film
- high resolution images

Ice particle in-situ imaging: B-ICI

B-ICI Kuhn, T., and A. J. Heymsfield (2016), Pure Appl. Geophys., 173 (9), doi: 10.1007/s00024-016-1324-x.

instrument uncovered

- 4 m long film
 - oil coated
 - 1 mm s⁻¹
- 30 mm long inlet
- well defined sampling volume

Ice particle in-situ imaging: B-ICI

Determine properties

- Single ice cloud particles
 - Size
 - Area
 - Shape
 - Volume, mass
- Ice clouds
 - Particle concentration
 - Particle size distribution (PSD)
 - Extinction coefficient

Ĵ100 µm

Particle size and area: D_{max} Maximum dimension A Cross-sectional area

Images 2012-04-04

100 µm

2013-02-20

2016-02-12

LULEÅ

OF TECHNOLOGY

UNIVERSITY

- Temperature seems related to cloud particle properties, but not always...
- Local conditions can be misleading
- Look at conditions at formation!
 - look at conditions along back trajectory (history)
 - cloud formation at:
 - warmer (liquid origin)
 - colder temperatures (in situ origin)
 - Different origin leads to different properties
- Classify clouds according to origin!
 - Liquid origin or
 - In situ origin

Shape Classification

Shape distribution

Shape distribution and average size

Wolf, V., T. Kuhn, M. Milz, P. Voelger, M. Krämer, and C. Rolf (2018), Atmos. Chem. Phys., 18(23), doi: 10.5194/acp-18-17371-2018.

10 measurement days: Wolf, V., T. Kt 46(21), doi: 10
4x in situ origin (21 PSDs)
6x liquid origin (24 PSDs)
Particle size: 10 μm - 1000 μm
Number concentration: 1 L⁻¹ - 500 L⁻¹

Wolf, V., T. Kuhn, and M. Krämer (2019), Geophys. Res. Lett., 46(21), doi: 10.1029/2019GL083841.

Gamma function: $N = N_0 \times D^{\mu} \times e^{-\lambda D}$ N_0 = intercept μ = dispersion λ = slope

$$D = maximum dimension$$

Wolf, V., T. Kuhn, and M. Krämer (2019), Geophys. Res. Lett., 46(21), doi: 10.1029/2019GL083841.

LULEÅ UNIVERSITY OF TECHNOLOGY

Particle size distribution

Wolf, V., T. Kuhn, and M. Krämer (2019), Geophys. Res. Lett., 46(21), doi: 10.1029/2019GL083841.

LULEÅ

OF TECHNOLOGY

UNIVERSITY

Wolf, V., T. Kuhn, and M. Krämer (2019), Geophys. Res. Lett., 46(21), doi: 10.1029/2019GL083841.

UNIVERSITY

OF TECHNOLOGY

Conclusions and outlook

- Growing dataset: high-resolution images of cirrus ice particles
- Useful to classify cirrus by origin
 - Liquid origin: large and complex particles
 - In situ origin: small and compact particles
- Cirrus PSD in Arctic similar to midlatitudes
- Shape distribution
- Improve B-ICI
- More B-ICI data
- More concurrent lidar and B-ICI
- Lidar validation (EarthCARE)
- New PhD position soon!

